経頭蓋磁気刺激(TMS)で拓く 霊長類研究の新展開 筒井 健一郎(東北大学)

経頭蓋磁気刺激(TMS)は、非侵襲的な脳活動の操作法として、ヒトにおける治療・研究目的での利用が進んでいる。われわれは、動物実験の新たな研究法としてTMSを利用するとともに、作用機序

の基礎研究も併せて展開してい る。これまでの成果として、遅延 反応課題を遂行中のサルにおい て、従来の破壊実験の結果の追 試を行うとともに、視空間作業記 憶における前頭連合野、頭頂連 合野、運動前野の役割分担を示 唆する、新たな結果が得られた。 また、単純ボタン押し課題などで の行動から、内側前頭皮質が、 気分や意欲の制御に重要である ことを示唆する結果が得られてい る。今後の展開として、TMSと皮 質表面電位(ECoG)や機能的 MRIなどの同時計測を始めてい るが、前頭連合野が全脳レベル の神経回路動態に与える影響を 調べることにより、認知や情動を 制御する神経機構が解明される ことが期待される。

Cited and modified from Willard and Shively (2012)

図の説明

健康な状態(左)および、うつ状態(右)のサル。

自然環境下で生息するサルの中にも、群れの中における社会的ストレスによって、うつ 病様の行動を示す個体がいることが報告されている(Willard and Shively (2012))。 健康なサルは、顔をあげて常に周囲に対して注意を払っているが、うつ状態のさるは、 長時間うつむいたまま動かない。われわれの実験室においては、TMSによる内側前頭 葉皮質の神経活動抑制によって、同様の行動変化が誘発されることを見出した。

東北大学大学院生命科学研究科•准教授。

1994年 東京大学文学部心理学科卒業、1999年 東京大学大学院博士課程修了・博士(心理学)。1999年 日本学術振興会特別研究員、2002年 Cambridge大学解剖学部 Research Associate、2005年 東北大学大学院生命科学研究科・助教授。2007年より、職階性変更のため准教授、現在に至る。

日本神経科学学会奨励賞(2003年)、日本心理学会国際賞奨励賞(2009年)受賞。